Skip to content
返回

导数与微分

发布日期:

导数的定义

f(x0)=limΔx0f(x0+Δx)f(x0)Δxf'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} f(x0)=limh0f(x0+h)f(x0)hf'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} f(x0)=limxx0f(x)f(x0)xx0f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}

一、导数的四则运算法则

  1. (u±v)=u±v(u \pm v)'=u' \pm v'
  2. (uv)=uv+uv(uv)' = u'v+uv'
  3. (uv)=uvuvv2\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}

二、基本公式

  1. (c)=0(c)' = 0
  2. xμ=μxμ1x^\mu = \mu x^{\mu-1}
  3. (sinx)=cosx(\sin x)' = \cos x
  4. (cosx)=sinx(\cos x)' = -\sin x
  5. (tanx)=sec2x(\tan x)' = \sec^2 x
  6. (cotx)=csc2x(\cot x)' = -\csc^2 x
  7. (secx)=secxtanx(\sec x)' = \sec x \cdot \tan x
  8. (cscx)=cscxcotx(\csc x)' = -\csc x \cdot \cot x
  9. (ex)=ex(e^x)' = e^x
  10. (ax)=axlna(a^x)' = a^x \ln a
  11. (lnx)=1x(\ln x)' = \frac{1}{x}
  12. (logax)=1xlna(\log_a x)' = \frac{1}{x \ln a}
  13. (arcsinx)=11x2(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}
  14. (arccosx)=11x2(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}
  15. (arctanx)=11+x2(\arctan x)' = \frac{1}{1+x^2}
  16. (arccotx)=11+x2(\operatorname{arccot} x)' = -\frac{1}{1+x^2}
  17. (x)=1(x)' = 1
  18. (x)=12x(\sqrt{x})' = \frac{1}{2\sqrt{x}}

三、高阶导数的运算法则

  1. [u(x)±v(x)](n)=u(n)(x)±v(n)(x)[u(x) \pm v(x)]^{(n)} = u^{(n)}(x) \pm v^{(n)}(x)
  2. [cu(x)](n)=cu(n)(x)[cu(x)]^{(n)} = cu^{(n)}(x)
  3. [u(ax+b)](n)=anu(n)(ax+b)[u(ax+b)]^{(n)} = a^n u^{(n)}(ax+b)
  4. [u(x)v(x)](n)=k=0nCnku(nk)(x)v(k)(x)[u(x) \cdot v(x)]^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)}(x) v^{(k)}(x)

四、基本初等函数的n阶导数公式

  1. (xn)(n)=n!(x^n)^{(n)} = n!
  2. (eax+b)(n)=aneax+b(e^{ax+b})^{(n)} = a^n \cdot e^{ax+b}
  3. (ax)(n)=axlnna(a^x)^{(n)} = a^x \ln^n a
  4. [sin(ax+b)](n)=ansin(ax+b+nπ2)[\sin(ax+b)]^{(n)} = a^n \sin \left(ax+b+n \cdot \frac{\pi}{2}\right)
  5. [cos(ax+b)](n)=ancos(ax+b+nπ2)[\cos(ax+b)]^{(n)} = a^n \cos \left(ax+b+n \cdot \frac{\pi}{2}\right)
  6. (1ax+b)(n)=(1)nann!(ax+b)n+1\left(\frac{1}{ax+b}\right)^{(n)} = (-1)^n \frac{a^n \cdot n!}{(ax+b)^{n+1}}
  7. [ln(ax+b)](n)=(1)n1an(n1)!(ax+b)n[\ln(ax+b)]^{(n)} = (-1)^{n-1} \frac{a^n \cdot (n-1)!}{(ax+b)^n}

五、微积分运算法则

  1. d(u±v)=du±dvd(u \pm v) = du \pm dv
  2. d(cu)=cdud(cu) = cdu
  3. d(uv)=vdu+udvd(uv) = vdu + udv
  4. d(uv)=vduudvv2d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}

六、常用微分公式

  1. d(c)=0d(c) = 0
  2. d(xμ)=μxμ1dxd(x^\mu) = \mu x^{\mu-1}dx
  3. d(sinx)=cosxdxd (\sin x) = \cos xdx
  4. d(cosx)=sinxdxd (cos x) = - sin xdx
  5. d(tanx)=sec2xdxd (tan x) = \sec^2 xdx
  6. d(cotx)=csc2xdxd (\cot x) = -\csc^2 xdx
  7. secxdx=lnsecx+tanx+c\int sec xdx = \ln |\sec x + \tan x| + c
  8. d(cscx)=cscxcotxdxd (\csc x) = -\csc x\cdot \cot xdx
  9. d(ex)=exdxd(e^x) = e^x dx
  10. d(ax)=axlnadxd (a^x) = a^x \ln adx
  11. d(lnx)=1xdxd (\ln x) = \frac{1}{x}dx
  12. d(logax)=1xlnadxd (\log_a x) = \frac{1}{x \ln a}dx
  13. d(arcsinx)=11x2dxd (\arcsin x) = \frac{1}{\sqrt{1-x^2}}dx
  14. d(arccosx)=11x2dxd (\arccos x) = -\frac{1}{\sqrt{1-x^2}}dx
  15. d(arctanx)=11+x2dxd (\arctan x) = \frac{1}{1+x^2}dx
  16. d(arccotx)=11+x2dxd (\operatorname{arc} \cot x) = -\frac{1}{1+x^2}dx

七、基本积分公式

  1. kdx=kx+c\int kdx = kx+c
  2. xμdx=xμ+1μ+1+c\int x^\mu dx = \frac{x^{\mu+1}}{\mu+1}+c
  3. dxx=lnx+c\int \frac{dx}{x} = \ln |x|+c
  4. axdx=axlna+c\int a^x dx = \frac{a^x}{\ln a}+c
  5. cosxdx=sinx+c\int \cos xdx = \sin x+c
  6. sinxdx=cosx+c\int \sin xdx = -\cos x+c
  7. 1cos2xdx=sec2xdx=tanx+c\int \frac{1}{\cos^2 x}dx = \int \sec^2 xdx = \tan x + c
  8. 1sin2xcsc2xdx=cotx+c\int \frac{1}{\sin^2 x}csc^2xdx = -\cot x+c
  9. 11+x2dx=arctanx+c\int \frac{1}{1+x^2}dx=\arctan x+c
  10. 11x2dx=arcsinx+c\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x+c

八、补充积分公式

  1. tanxdx=lncosx+c\int \tan xdx=-\ln |\cos x|+c
  2. cotxdx=lnsinx+c\int \cot xdx = \ln |\sin x| + c
  3. cscxdx=lncscxcotx+c\int \csc xdx = \ln |\csc x-\cot x| + c
  4. 1a2+x2dx=1aarctanxa+c\int \frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan\frac{x}{a}+c
  5. 1x2a2dx=12alnxax+a+c\int \frac{1}{x^2-a^2}dx=\frac{1}{2a} \ln |\frac{x-a}{x+a}|+c
  6. 1a2x2dx=arcsinxa+c\int \frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{x}{a}+c
  7. 1x2±a2dx=lnx+x2±a2+c\int \frac{1}{\sqrt{x^2\pm a^2}}dx=\ln|x+\sqrt{x^2\pm a^2}|+c

九、常用凑微分公式

积分型换元公式
f(ax+b)dx=1af(ax+b)d(ax+b)f(ax+b)dx = \frac{1}{a}\int f(ax+b)d(ax+b)u=ax+bu=ax+b
f(xμ)xμ1dx=1μf(xμ)d(xμ)f(x^{\mu})x^{\mu-1}dx = \frac{1}{\mu}\int f(x^{\mu})d(x^{\mu})u=xnu = x^n
f(lnx)1xdx=f(lnx)d(lnx)f(\ln x) \cdot \frac{1}{x} dx = \int f(\ln x) d(\ln x)u=lnxu=\ln x
f(ex)exdx=f(ex)d(ex)f(e^{x}) \cdot e^{x} dx = \int f(e^{x}) d(e^{x})u=exu=e^x
f(ax)axdx=1lnaf(ax)d(ax)f(a^{x}) \cdot a^{x} dx = \frac{1}{\ln a} \int f(a^{x}) d(a^{x})u=axu=a^x
f(sinx)cosxdx=f(sinx)d(sinx)f(\sin x) \cdot \cos x dx = \int f(\sin x) d(\sin x)u=sinxu = \sin x
f(cosx)sinxdx=f(cosx)d(cosx)f(\cos x) \cdot \sin x dx = -\int f(\cos x) d(\cos x)u=cosxu = \cos x
f(tanx)sec2xdx=f(tanx)d(tanx)f(\tan x) \cdot \sec^{2} x dx = \int f(\tan x) d(\tan x)u=tanxu = \tan x
f(cotx)csc2xdx=f(cotx)d(cotx)f(\cot x) \cdot \csc^{2} x dx = \int f(\cot x) d(\cot x)u=cotxu = \cot x
f(arctanx)11+x2dx=f(arctanx)d(arctanx)f(\arctan x) \cdot \frac{1}{1+x^{2}} dx = \int f(\arctan x) d(\arctan x)u=arctanxu = \arctan x
f(arcsinx)11x2dx=f(arcsinx)d(arcsinx)f(\arcsin x) \cdot \frac{1}{\sqrt{1-x^{2}}} dx = \int f(\arcsin x) d(\arcsin x)u=arcsinxu = \arcsin x

十、分部积分法公式

(1) 形如:xneaxdx,u=xn,dv=eaxdx x^{n}e^{ax}dx, u=x^{n}, dv=e^{ax}dx

形如: xnsinxdxu=xn,dv=sinxdxx^{n} \sin xdx \quad u=x^{n}, dv = \sin xdx

形如:xncosxdxu=xn,dv=cosxdxx^{n} \cos xdx \quad u=x^{n}, dv = \cos xdx

(2) 形如:xnarctanxdx,u=arctanx,dv=xndxx^{n} \arctan xdx, \quad u=\arctan x, \quad dv=x^{n}dx

形如:xnlnxdx,u=lnx,dv=xndxx^{n} \ln xdx, \quad u=\ln x, \quad dv=x^{n}dx

(3) 形如: eaxsinxdx,eaxcosxdxu=eax,sinx,cosxe^{ax} \sin xdx, \int e^{ax} \cos xdx \quad u=e^{ax}, \sin x, \cos x

十一、第二换元积分法中的三角换元公式

  1. a2x2x=asint\sqrt{a^{2}-x^{2}} \quad x = a \sin t
  2. a2+x2x=atant\sqrt{a^{2}+x^{2}} \quad x = a \tan t
  3. x2a2x=asect\sqrt{x^{2}-a^{2}} \quad x = a \sec t

【特殊角的三角函数值】

  1. sin0=0\sin0=0
  2. sinπ6=12\sin\frac{\pi}{6}=\frac{1}{2}
  3. sinπ3=32\sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}
  4. sinπ2=1\sin\frac{\pi}{2}=1
  5. sinπ=0\sin\pi=0
  6. cos0=1\cos0=1
  7. cosπ6=32\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}
  8. cosπ3=12\cos\frac{\pi}{3}=\frac{1}{2}
  9. cosπ2=0\cos\frac{\pi}{2}=0
  10. cosπ=1\cos\pi=-1
  11. tan0=0\tan0=0
  12. tanπ6=33\tan\frac{\pi}{6}=\frac{\sqrt{3}}{3}
  13. tanπ3=3\tan\frac{\pi}{3}=\sqrt{3}
  14. tanπ2\tan\frac{\pi}{2} 不存在
  15. tanπ=0\tan\pi=0
  16. cot0\cot0 不存在
  17. cotπ6=3\cot\frac{\pi}{6}=\sqrt{3}
  18. cotπ3=33\cot\frac{\pi}{3}=\frac{\sqrt{3}}{3}
  19. cotπ2=0\cot\frac{\pi}{2}=0
  20. cotπ\cot\pi 不存在

十二、重要公式

  1. limx0sinxx=1\lim_{x\to0}\frac{\sin x}{x}=1
  2. limx0(1+x)1x=e\lim_{x\to0}(1+x)^{\frac{1}{x}}=e
  3. limnan(a>0)=1\lim_{n\to\infty}\sqrt[n]{a}(a>0)=1
  4. limnnn=1\lim_{n\to\infty}\sqrt[n]{n}=1
  5. limx+arctanx=π2\lim_{x\to+\infty}\arctan x=\frac{\pi}{2}
  6. limxarctanx=π2\lim_{x\to-\infty}\arctan x=-\frac{\pi}{2}
  7. limx+arccotx=0\lim_{x\to+\infty}\operatorname{arccot}x=0
  8. limxarccotx=π\lim_{x\to-\infty}\operatorname{arccot}x=\pi
  9. limx0e1x=0\lim_{x\to0}e^{\frac{1}{x}}=0
  10. limx0e1x=\lim_{x\to0}e^{\frac{1}{x}}=\infty
  11. limx0xx=1\lim_{x\to0}x^{x}=1
  12. limxa0xn+a1xn1++anb0xm+b1xm1++bm={a0b0n=m0n<mn>m\lim_{x\to\infty}\frac{a_0x^n+a_1x^{n-1}+\dots+a_n}{b_0x^m+b_1x^{m-1}+\dots+b_m}=\begin{cases}\frac{a_0}{b_0} & n=m \\ 0 & n<m \\ \infty & n>m\end{cases} (系数不为0的情况)

十三、常用等价无穷小关系(X->0)

  1. sinxx\sin x-x
  2. tanxx\tan x-x
  3. arcsinxx\arcsin x - x
  4. arctanxx\arctan x - x
  5. 1cosx12x21-\cos x-\frac{1}{2}x^2
  6. ln(1+x)x\ln(1+x)-x
  7. ex1xe^{x}-1-x
  8. ax1xlnaa^{x}-1-x\ln a
  9. (1+x)x1ex(1+x)^{x}-1-ex

十四、三角函数公式

1.两角和公式

  1. sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cos B + \cos A \sin B

  2. cos(A+B)=cosAcosBsinAsinB\cos(A+B) = \cos A \cos B - \sin A \sin B

  3. tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}

  4. sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B

  5. cos(AB)=cosAcosB+sinAsinB\cos(A-B) = \cos A \cos B + \sin A \sin B

  6. tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}

  7. cot(A+B)=cotAcotB1cotB+cotA\cot(A+B) = \frac{\cot A \cdot \cot B - 1}{\cot B + \cot A}

  8. cot(AB)=cotAcotB+1cotBcotA\cot(A-B) = \frac{\cot A \cdot \cot B + 1}{\cot B - \cot A}

2.二倍角公式

  1. sin2A=2sinAcosA\sin 2A = 2 \sin A \cos A
  2. cos2A=cos2Asin2A=12sin2A=2cos2A1\cos 2A = \cos^2 A - \sin^2 A = 1 - 2 \sin^2 A = 2 \cos^2 A - 1
  3. tan2A=2tanA1tan2A\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}

3.半角公式

  1. sinA2=1cosA2\sin \frac{A}{2} = \sqrt{\frac{1 - \cos A}{2}}
  2. cosA2=1+cosA2\cos \frac{A}{2} = \sqrt{\frac{1 + \cos A}{2}}
  3. tanA2=1cosA1+cosA=sinA1+cosA\tan \frac{A}{2} = \sqrt{\frac{1 - \cos A}{1 + \cos A}} = \frac{\sin A}{1 + \cos A}
  4. cotA2=1+cosA1cosA=sinA1cosA\cot \frac{A}{2} = \sqrt{\frac{1 + \cos A}{1 - \cos A}} = \frac{\sin A}{1 - \cos A}

4. 和差化积公式

  1. sina+sinb=2sina+b2cosab2\sin a + \sin b = 2 \sin \frac{a+b}{2} \cdot \cos \frac{a-b}{2}
  2. sinasinb=2cosa+b2sinab2\sin a - \sin b = 2 \cos \frac{a+b}{2} \cdot \sin \frac{a-b}{2}
  3. cosa+cosb=2cosa+b2cosab2\cos a + \cos b = 2 \cos \frac{a+b}{2} \cdot \cos \frac{a-b}{2}
  4. cosacosb=2sina+b2sinab2\cos a - \cos b = -2 \sin \frac{a+b}{2} \cdot \sin \frac{a-b}{2}
  5. tana+tanb=sin(a+b)cosacosb\tan a + \tan b = \frac{\sin(a+b)}{\cos a \cdot \cos b}

5. 积化和差公式

  1. sinasinb=12[cos(a+b)cos(ab)]\sin a \sin b = -\frac{1}{2}[\cos(a+b) - \cos(a-b)]
  2. cosacosb=12[cos(a+b)+cos(ab)]\cos a \cos b = \frac{1}{2}[\cos(a+b) + \cos(a-b)]
  3. sinacosb=12[sin(a+b)+sin(ab)]\sin a \cos b = \frac{1}{2}[\sin(a+b) + \sin(a-b)]
  4. cosasinb=12[sin(a+b)sin(ab)]\cos a \sin b = \frac{1}{2}[\sin(a+b) - \sin(a-b)]

6. 万能公式

  1. sina=2tana21+tan2a2\sin a = \frac{2 \tan \frac{a}{2}}{1 + \tan^2 \frac{a}{2}}
  2. cosa=1tan2a21+tan2a2\cos a = \frac{1 - \tan^2 \frac{a}{2}}{1 + \tan^2 \frac{a}{2}}
  3. tana=2tana21tan2a2\tan a = \frac{2 \tan \frac{a}{2}}{1 - \tan^2 \frac{a}{2}}

7. 平方关系

  1. sin2x+cos2x=1\sin^2 x + \cos^2 x = 1
  2. sec2xtan2x=1\sec^2 x - \tan^2 x = 1
  3. csc2xcot2x=1\csc^2 x - \cot^2 x = 1

8. 倒数关系

  1. tanxcotx=1\tan x \cdot \cot x = 1
  2. secxcosx=1\sec x \cdot \cos x = 1
  3. cscxsinx=1\csc x \cdot \sin x = 1

9. 商数关系

  1. tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}
  2. cotx=cosxsinx\cot x = \frac{\cos x}{\sin x}

几种常见的微分方程

  1. 可分离变量的微分方程:dydx=f(x)g(y),f1(x)g1(y)dx+f2(x)g2(y)dy=0\frac{dy}{dx} = f(x)g(y), \quad f_1(x)g_1(y)dx + f_2(x)g_2(y)dy = 0
  2. 齐次微分方程: dydx=f(yx)\frac{dy}{dx} = f(\frac{y}{x})

分享此文章:

上一篇
导数与微分——习题讲解
下一篇
极限与连续